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A fast computer algorithm is described which brings computation of the permanents of 
sparse matrices, specifically, chemical adjacency matrices, within the reach of a desktop com- 
puter. Examples and results are presented, along with a discussion of the relationship of the per- 
manent to the Kekul6 structure count. Also presented is a C-language implementation which 
was deliberately written for ease of translation into other high-level languages. 

The permanent  of  a matrix is conceptually similar to the determinant.  The deter- 
minant  o f  an N x N matrix is the sum of  all possible products  o f  elements 
~ ( -  1 )Zai:, aj,2, ak,3. •. ax,N such that i , j ,  k . . .  are all different, and z is odd for half  
o f  the terms and even for the other half. The expression for the permanent  is nearly 
the same bu t  lacks the ( - 1 )  z multiplier (fig. 1). This report  describes a fast compu-  
ter algori thm which finds exact values for permanents  of  sparse matrices, with 
examples of  chemical adjacency matrices up to 44 x 44, in a reasonable time on a 
desktop computer .  

Fo r  a general N x N matrix A, per(A) is the sum of  N! terms, each of  which is 
the product  of  N matrix elements. This is also true for the determinant  IAI, but  ele- 
gant  methods  exist for shortening the calculation of  IAI. Some shortcuts also exist 
for per(A),  but  these give only bounds  or estimates [1]. Since 20! ~ 2.4 x 1018, com- 

[A] = +(2xS)-(4x3)=10-12=-2 

per(A) = + (2x5) + (4><3) = 10+ 12=22 

Fig. I. The determinant and permanent ofa 2 × 2 matrix. 
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puting per(A) by brute force for any matrix of reasonable size clearly exceeds the 
capability of any machine existing or planned. It may be possible, however, to 
exploit the properties of unusual matrices to reduce this computat ion to a manage- 
able size. The present study presents a technique for sparse matrices and uses as 
an example the adjacency matrix, a matrix widely utilized in chemical graph the- 
ory. 

The simplest form of the adjacency matrix A is just an a tom connectivity table 
in matrix form. Thus, ai j  = aj,i = 1 if atoms i and j  are directly bonded; all other ele- 
ments are zero. Hydrogen atoms are typically excluded. Therefore, for molecules 
of reasonable size almost all elements of  A are zero, and all of its non-zero elements 
are one. Thus, only a tiny fraction of  the N! terms that make up per(A) for these 
matrices are non-zero, and those that are not are all 1N = 1. To calculate per(A), 
therefore, it is not necessary even to add the terms but only to count the non-zero 
terms. These facts are the key to the computer algorithm presented below. 

It has been stated [2] that per(A) is equal to the square of the Kekul6 structure 
count K for conjugated systems, but there seems to have been no systematic 
at tempt to verify that assertion. For benzenoid hydrocarbons, det(A) - IAI = K z, 
but this relationship is not generally true for other types of molecules. The author  
has determined that per(A) = K 2 for some hydrocarbons for which IAI ¢ K 2 
(fig. 2), but that equality fails for many nonalternant molecules such as fullerenes. 
(The author is conducting a study of the significance of per(A) for fullerenes, which 
will be published separately.) In any case, Klein and Liu [3] have illustrated a 
method due to Kasteleyn [4] for calculating K from what they term a signed adja-  
cency  matrix S. They claim this method is applicable to any planar chemical graph. 
The utility of per(A) values for adjacency matrices is likely to be elsewhere than 
determination of  K values, but these other areas remain to be explored. The author  
hopes that  the algorithm presented here will encourage such exploration. 

For an adjacency matrix, the permanent  computat ion reduces to finding the 
number  of  different products of matrix elements ai,1, aj,2, a k , 3 . . ,  such that the ele- 
ments are all equal to one and the first subscripts are all different, i.e., no two ele- 
ments are in the same row. For each such combination that exists, the permanent  
increases by 1. 

I III 

I I  

Fig. 2. I, Biphenylene; II, tetraphenylene; HI, pentalene. 
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The f lowchart  for a compute r  a lgor i thm that  finds these combina t ions  is shown 
in fig. 3. This a lgor i thm first examines all ai,1 until it finds an ai,1 = 1. Then,  after 
s toring the "act ive"  i, it examines all aj,2 until it finds an aj,2 = 1. Next,  it checks to 
see that  i ¢ j .  I f  i = j ,  it proceeds to the next aj,2 = 1; if not,  it begins searching for 
an ak,3 = 1, keeping track of  the "act ive"  i a n d j  so it can verify that  i ¢ k a n d j  ~ k. 
Whenever  the tree thus grown reaches all the way to the last co lumn in the matrix,  
the a lgor i thm increments  a counter .  I f  the non-zero elements were other  than  one, 
it could compute  a product  and update  a running  total. The key to examining all 
possible combina t ions  in a reasonable number  of  C P U  cycles is t imely pruning  of  
the tree. Once the a lgor i thm finds a n  ai,1 = 0,  it never examines another  tree begin- 
ning with that  ai.1. Similarly, ifai,1 = 1 but  aj,2 = 0, it never examines another  tree 
beginning with that  ai, l, aj,2. T h U S ,  the tree with N! potent ial  branches is quickly 
p runed  to a manageable  size. 

There is no apparen t  general relat ionship between C P U  time for this a lgor i thm 
and the size of  the problem. For  fullerenes, it appears roughly true that  each addi- 
t ion of  two vertices increases C P U  time by a factor of  three. Nevertheless,  the 
au thor  has observed cases in which C P U  times for two fullerenes of  the same size 
differ by a factor of  two, even when the values of  per(A) were nearly equal. In gen- 
era!, however,  it is not  even clear that  larger matrices necessarily take more  t ime 
than  smaller ones. The number  of  non-zero elements in the matr ix  is surely an 
impor t an t  factor. Thus,  on a machine  equipped with an 80486 D X / 3 3  CPU,  a test 

I Increment i. 

I o  ~crement J; 
retrieve i 

r n e w  j 

Read in matrix; 
set row, co.=l I 

Fig. 3. Flowchart of algorithm for finding per(A). 
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/* Program to find the permanent of an adjacency matrix */ 
#include <stdio.h> 
main() 
{ 

*/ 

int a[150] [150] 
int b[150] ; 

int d = i, n, i 
long per = 0; 

/* the adjacency matrix */ 
/* stores active row number for each 

column */ 
j, f, e; /* various counters */ 

/* permanent counter 

scanf("%d",&n) ; /* read order of the matrix */ 
for (i=l ; i<=n;i++) { 

for (j=l;j<=n;j++) 
scanf("%d",&a[i] [j]); /* get a matrix element */ 

) 
sl: b[d]=l; /* initialize row counter for 

s2: if (a[b[d]] [d]) 
goto s7; 

s3: if (b[d] == n) 
goto s5; 

(b[d])++; 
goto s2; 

sS: if (d == i) 
goto s14; 

d--; 

goto s3; 

s7 : f=0; 

for (e=l; e<d; e++){ 

if (b[e] == b[d] ) { 
f++; 
break; 

} 
) 
if (f) 

goto s3; 
if (d == n) { 

per++; 
goto s3; 

) 
d++; 

column d */ 
/* a(i,j) = 07 */ 
/* if not, test same row in previous 

columns */ 
/* i = N (last row)? */ 
/* if yes, check whether you are in 

column 1 */ 
/* increment row number */ 
/* branch back to a(i,j)=0? for new 

row */ 
/* already in column i? */ 
/* if yes, then exit */ 
/* if no, go back to previous 

column */ 
/* go back to check for last 

(ultimate) row */ 
/* reset flag for same row, previous 

column */ 
/* test same row, previous columns 

(up to d-l) */ 
/* if yes, */ 
/* set flag */ 
/* then exit loop */ 

/* if flag is set */ 
/* go back to last row test */ 
/* otherwise, if in last col */ 
/* increment permanent */ 
/* then resume testing rows */ 

/* if not in last column, increment 
column */ 

goto sl; /* then test new column */ 
s14: printf("%Id\n",per) ; /* print result */ 

Fig. 4. An implementation of the algorithm in the C programming language. This implementation 
deliberately avoids programming features, such as pointers, that are peculiar to C in order to facilitate 

translation into other languages. 
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matrix for a C44 non-alternant hydrocarbon with 22 divalent and 22 trivalent ver- 
tices gave per(A) = 1716 in 2.5 hours, while obtaining per(A) = 2436480 for a C44 
fullerene took approximately 360 hours. (Fullerenes necessarily have all vertices 
trivalent.) Since 44! ~ 2.7 x 1054, however, this latter result represents a reduction 
of tens of orders of magnitude in the resource demands of the problem. Increases 
in speed might be realized from further optimizing the computer code, and proces- 
sors faster than the 80486 DX/33 are now generally available. 

The algorithm presented above allows, in particular, rapid computation of 
per(A) for adjacency matrices of molecules large enough to be theoretically inter- 
esting. The specific implementation in the C language [5] was deliberately written 
for ease of translation into other high-level languages. This algorithm should be 
readily adaptable to other types of sparse matrices, including those with elements 
other than zero and one, thus permitting wider exploration of the significance and 
uses of permanents. 
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