
Journal of Mathematical Chemistry 18 (1995) 115-119 115

A fast computer algorithm for finding the
permanent of adjacency matrices

Gordon G. Cash

Environmental Effects Branch, Health & Environmental Review Division,
Office of Pollution Prevention & Toxics, U.S. Environmental Protection Agency,

401 M Street, S. IV., Washington, DC20460, USA

Received 13 February 1995; revised 27 June 1995

A fast computer algorithm is described which brings computation of the permanents of
sparse matrices, specifically, chemical adjacency matrices, within the reach of a desktop com-
puter. Examples and results are presented, along with a discussion of the relationship of the per-
manent to the Kekul6 structure count. Also presented is a C-language implementation which
was deliberately written for ease of translation into other high-level languages.

The permanent of a matrix is conceptually similar to the determinant. The deter-
minant o f an N x N matrix is the sum of all possible products o f elements
~ (- 1)Zai:, aj,2, ak,3. •. ax,N such that i , j , k . . . are all different, and z is odd for half
o f the terms and even for the other half. The expression for the permanent is nearly
the same bu t lacks the (- 1) z multiplier (fig. 1). This report describes a fast compu-
ter algori thm which finds exact values for permanents of sparse matrices, with
examples of chemical adjacency matrices up to 44 x 44, in a reasonable time on a
desktop computer .

Fo r a general N x N matrix A, per(A) is the sum of N! terms, each of which is
the product of N matrix elements. This is also true for the determinant IAI, but ele-
gant methods exist for shortening the calculation of IAI. Some shortcuts also exist
for per(A), but these give only bounds or estimates [1]. Since 20! ~ 2.4 x 1018, com-

[A] = +(2xS)-(4x3)=10-12=-2

per(A) = + (2x5) + (4><3) = 10+ 12=22

Fig. I. The determinant and permanent ofa 2 × 2 matrix.

© J.C. Baltzer AG, Science Publishers

116 G. G. Cash / Permanent of adjacency matrices

puting per(A) by brute force for any matrix of reasonable size clearly exceeds the
capability of any machine existing or planned. It may be possible, however, to
exploit the properties of unusual matrices to reduce this computat ion to a manage-
able size. The present study presents a technique for sparse matrices and uses as
an example the adjacency matrix, a matrix widely utilized in chemical graph the-
ory.

The simplest form of the adjacency matrix A is just an a tom connectivity table
in matrix form. Thus, ai j = aj,i = 1 if atoms i and j are directly bonded; all other ele-
ments are zero. Hydrogen atoms are typically excluded. Therefore, for molecules
of reasonable size almost all elements of A are zero, and all of its non-zero elements
are one. Thus, only a tiny fraction of the N! terms that make up per(A) for these
matrices are non-zero, and those that are not are all 1N = 1. To calculate per(A),
therefore, it is not necessary even to add the terms but only to count the non-zero
terms. These facts are the key to the computer algorithm presented below.

It has been stated [2] that per(A) is equal to the square of the Kekul6 structure
count K for conjugated systems, but there seems to have been no systematic
at tempt to verify that assertion. For benzenoid hydrocarbons, det(A) - IAI = K z,
but this relationship is not generally true for other types of molecules. The author
has determined that per(A) = K 2 for some hydrocarbons for which IAI ¢ K 2
(fig. 2), but that equality fails for many nonalternant molecules such as fullerenes.
(The author is conducting a study of the significance of per(A) for fullerenes, which
will be published separately.) In any case, Klein and Liu [3] have illustrated a
method due to Kasteleyn [4] for calculating K from what they term a signed adja-
cency matrix S. They claim this method is applicable to any planar chemical graph.
The utility of per(A) values for adjacency matrices is likely to be elsewhere than
determination of K values, but these other areas remain to be explored. The author
hopes that the algorithm presented here will encourage such exploration.

For an adjacency matrix, the permanent computat ion reduces to finding the
number of different products of matrix elements ai,1, aj,2, a k , 3 . . , such that the ele-
ments are all equal to one and the first subscripts are all different, i.e., no two ele-
ments are in the same row. For each such combination that exists, the permanent
increases by 1.

I III

I I

Fig. 2. I, Biphenylene; II, tetraphenylene; HI, pentalene.

G. G. Cash / Permanent of adjacency matrices 117

The f lowchart for a compute r a lgor i thm that finds these combina t ions is shown
in fig. 3. This a lgor i thm first examines all ai,1 until it finds an ai,1 = 1. Then, after
s toring the "act ive" i, it examines all aj,2 until it finds an aj,2 = 1. Next, it checks to
see that i ¢ j . I f i = j , it proceeds to the next aj,2 = 1; if not, it begins searching for
an ak,3 = 1, keeping track of the "act ive" i a n d j so it can verify that i ¢ k a n d j ~ k.
Whenever the tree thus grown reaches all the way to the last co lumn in the matrix,
the a lgor i thm increments a counter . I f the non-zero elements were other than one,
it could compute a product and update a running total. The key to examining all
possible combina t ions in a reasonable number of C P U cycles is t imely pruning of
the tree. Once the a lgor i thm finds a n ai,1 = 0, it never examines another tree begin-
ning with that ai.1. Similarly, ifai,1 = 1 but aj,2 = 0, it never examines another tree
beginning with that ai, l, aj,2. T h U S , the tree with N! potent ial branches is quickly
p runed to a manageable size.

There is no apparen t general relat ionship between C P U time for this a lgor i thm
and the size of the problem. For fullerenes, it appears roughly true that each addi-
t ion of two vertices increases C P U time by a factor of three. Nevertheless, the
au thor has observed cases in which C P U times for two fullerenes of the same size
differ by a factor of two, even when the values of per(A) were nearly equal. In gen-
era!, however, it is not even clear that larger matrices necessarily take more t ime
than smaller ones. The number of non-zero elements in the matr ix is surely an
impor t an t factor. Thus, on a machine equipped with an 80486 D X / 3 3 CPU, a test

I Increment i.

I o ~crement J;
retrieve i

r n e w j

Read in matrix;
set row, co.=l I

Fig. 3. Flowchart of algorithm for finding per(A).

118 G. G. Cash / Permanent of adjacency matrices

/* Program to find the permanent of an adjacency matrix */
#include <stdio.h>
main()
{

*/

int a[150] [150]
int b[150] ;

int d = i, n, i
long per = 0;

/* the adjacency matrix */
/* stores active row number for each

column */
j, f, e; /* various counters */

/* permanent counter

scanf("%d",&n) ; /* read order of the matrix */
for (i=l ; i<=n;i++) {

for (j=l;j<=n;j++)
scanf("%d",&a[i] [j]); /* get a matrix element */

)
sl: b[d]=l; /* initialize row counter for

s2: if (a[b[d]] [d])
goto s7;

s3: if (b[d] == n)
goto s5;

(b[d])++;
goto s2;

sS: if (d == i)
goto s14;

d--;

goto s3;

s7 : f=0;

for (e=l; e<d; e++){

if (b[e] == b[d]) {
f++;
break;

}
)
if (f)

goto s3;
if (d == n) {

per++;
goto s3;

)
d++;

column d */
/* a(i,j) = 07 */
/* if not, test same row in previous

columns */
/* i = N (last row)? */
/* if yes, check whether you are in

column 1 */
/* increment row number */
/* branch back to a(i,j)=0? for new

row */
/* already in column i? */
/* if yes, then exit */
/* if no, go back to previous

column */
/* go back to check for last

(ultimate) row */
/* reset flag for same row, previous

column */
/* test same row, previous columns

(up to d-l) */
/* if yes, */
/* set flag */
/* then exit loop */

/* if flag is set */
/* go back to last row test */
/* otherwise, if in last col */
/* increment permanent */
/* then resume testing rows */

/* if not in last column, increment
column */

goto sl; /* then test new column */
s14: printf("%Id\n",per) ; /* print result */

Fig. 4. An implementation of the algorithm in the C programming language. This implementation
deliberately avoids programming features, such as pointers, that are peculiar to C in order to facilitate

translation into other languages.

G. G. Cash / Permanent of adjacency matrices 119

matrix for a C44 non-alternant hydrocarbon with 22 divalent and 22 trivalent ver-
tices gave per(A) = 1716 in 2.5 hours, while obtaining per(A) = 2436480 for a C44
fullerene took approximately 360 hours. (Fullerenes necessarily have all vertices
trivalent.) Since 44! ~ 2.7 x 1054, however, this latter result represents a reduction
of tens of orders of magnitude in the resource demands of the problem. Increases
in speed might be realized from further optimizing the computer code, and proces-
sors faster than the 80486 DX/33 are now generally available.

The algorithm presented above allows, in particular, rapid computation of
per(A) for adjacency matrices of molecules large enough to be theoretically inter-
esting. The specific implementation in the C language [5] was deliberately written
for ease of translation into other high-level languages. This algorithm should be
readily adaptable to other types of sparse matrices, including those with elements
other than zero and one, thus permitting wider exploration of the significance and
uses of permanents.

References

[1] H. Minc, in: Encyclopedia of Mathematics and Its Applications, Vol. 6, ed. G.-C. Rota
(Addison-Wesley, Reading, MA, 1978) pp. 1-119.

[2] (a) N. Trinajstir, Chemical Graph Theory, 2nd Ed. (CRC, Boca Raton, FL, 1993) pp. 167-168;
(b) D.M. Cvetkovi~, I. Gutman andN. Trinajsti~, Chem. Phys. Lett. 16 (1972) 614;
(c) J.K. Percus, J. Math. Phys. 10 (1969) 1881.

[3] D.J. Klein and X. Liu, J. Comput. Chem. 12 (1991) 1260.
[4] (a) P.W. Kasteleyn, J. Math. Phys. 4 (1963) 287;

(b) P.W. Kasteleyn, in: Graph Theory and Theoretical Physics, ed. F. Harary (Academic Press,
New York, 1967) chap. 2.

[5] B.W. Kernighan and D.M. Ritchie, The C Programming Language, 2nd Ed. (Prentice-Hall,
Englewood Cliffs, N J, 1988).

